Article 7418

Title of the article

THE REASON OF APPLICATION OF TRANSPEDICULAR DEVICES WITH BALKS MADE OF NITINOL
AND TITANIUM ALLOY IN THE TREATMENT OF PATIENTS WITH SPINAL INJURY 

Authors

Usikov Vladimir Dmitrievich, Doctor of medical sciences, professor, chief executive, Medical and technical firm “Sintez” (building 2, 1v Tsentralnaya street, Penza, Russia), E-mail: usikov1952@list.ru
Kuftov Vladimir Sergeevich, Candidate of medical sciences, neurosurgeon, Bryansk City Hospital № 1 (11 Kamozina street, Bryansk, Russia), E-mail: kuftov@mail.ru
Kollerov Mikhail Yur'evich, Doctor of engineering sciences, professor, sub-department of materials science and technology of materials processing, Moscow Aviation Institute (national research university) (4 Volokolamskoe highway, Moscow, Russia), E-mail: kollerov@gmail.com
Gusev Dmitriy Evgen'evich, Candidate of engineering sciences, professor, sub-department of materials science and technology of materials processing, Moscow Aviation Institute (national research university) (4 Volokolamskoe highway, Moscow, Russia), E-mail: gusev-home@mail.ru
Monashenko Dmitriy Nikolaevich, Candidate of medical sciences, head of the department of neurosurgery № 1, City Hospital № 26 (2 Kostyushko street, Saint-Petersburg, Russia), E-mail: d.monashenko@yandex.ru 

Index UDK

616-089.15:611.711 

DOI

10.21685/2072-3032-2018-4-7 

Abstract

Background. The relevance and objectives of the work theoretically investigated the possibility of using beams from nitinol to stabilize the spinal segments is also experimentally used for vertebral fractures in the lower thoracic and lumbar regions.
Materials and methods. Theoretical studies were carried out on the course of an elementary model of the lumbar spine, which simulated a compression fracture, laminectomy and stabilization by a transpedicular device with beams made of titanium or titanium nickelide. Linear and angular displacements of the spinal structures were studied under functional loads with the determination of the stability coefficient. In addition, the maximum stresses occurring in the bone structures of the elements of the transpedicular device were recorded. Theoretical studies have been proven by clinical examples of using a pedicle device with titanium and nitinol beams.
Results. Stability healthy spinal motor segment is 100 %. Calculations showed that at vertebra fracture with damage to various osteoligament columns, a decrease in stability in the vertebral motor segment is observed up to 12 %. The stability of the damaged spinal segment when using nitinol beams increases to 85 % with an isolated fracture of the vertebral body and up to 70% with a fracture of the vertebral body and the defect of its posterior structures. In the case of beams of titanium alloy stability of the segment exceeds 100 %. Nitinol beams retain their performance when deformations exceed 3 %, while for titanium beams there is a danger of fatigue failure or loss of the original shape.
Conclusions. In case of unstable vertebral body fractures with preservation of the posterior osteoligamental column (type B), the use of nitinol beams in the transpedicular device is shown, which improves the biomechanics of the stabilized spine, reduces bone resorption around the screws, creates conditions for proper rehabilitation of patients in the postoperative period and reduces the risk of syndrome of adjacent vertebral motor segments. In case of unstable vertebral body fractures (type B) that required laminectomy and unstable spinal injuries with damage to all osteoligamentous columns (type C), it is necessary to use rigid beams made of titanium alloy in the pedicle device. The intended applications of the material obtained are traumatology, vertebrology, and neurosurgery. 

Key words

vertebral fracture, semirigid transpedicular fixation 

Download PDF
References

1. Berdyugin K. A., Karenin M. S. Fundamental'nye issledovaniya [Fundamental researches]. 2010, no. 9, pp. 61–71.
2. Usikov V. V., Usikov V. D. Travmatologiya i ortopediya Rossii [Traumatology and orthopedics in Russia]. 2006, no. 1, pp. 21–26.
3. Kaner T., Sasani M., Oktenoglu T., Cosar M., Ozer A. F. Turk. Neurosurg. 2009, vol. 19 (4), pp. 319–326.
4. Mohi Eldin M. M., Ali A. M. Asian Spine J. 2014, vol. 8 (3), pp. 281–297. DOI org/10.4184/asj.2014.8.3.281.
5. Martin B. I., Mirza S. K., Comstock B. A., Gray D. T., Kreuter W., Deyo R. A. Spine. 2007, no. 32 (3), pp. 382–387. DOI 10.1097/01.brs/0000254104/55716.46.
6. Levchenko S. K., Dreval' O. N., Il'in A. A., Kollerov M. Yu., Rynkov I. P. Voprosy neyrokhirurgii imeni N. N. Burdenko [Neurosurgery issues named after N. N. Burdenko]. 2004, no. 1, pp. 26–32.
7. Levchenko S. K., Dreval' O. N., Il'in A. A., Kollerov M. Yu., Rynkov I. P., Baskov A. V. Voprosy neyrokhirurgii im. N. N. Burdenko [Neurosurgery issues named after N. N. Burdenko]. 2011, no. 1, pp. 20–26.
8. Kashkoush A., Agarwal N., Paschel E., Goldschmidt E., Gerszten P. C. Cureus. 2016, vol. 10, no. 8 (6), p. e637. DOI 10.7759/cureus.637.
9. Sengupta D. K., Bucklen Brandon, McAfee Paul C., Nichols Jeff, Angara Raghavendra, Khalil Saif Advances in Orthopedics. 2013, vol. 2013, Article ID 745610, 9 p. DOI org/10.1155/2013/745610.
10. Fay Li-Yu, Wu Jau-Ching, Tsai Tzu-Yun, Wu Ching-Lan, Huang Wen-Cheng, Cheng Henrich Clinical Neurology and Neurosurgery. 2013, no. 115, pp. 535–541.
11. Kolesov S. V., Shvets V. V., Kolbovskiy D. A., Kaz'min A. I., Morozova N. S. Vestnik travmatologii i ortopedii im. N. N. Priorova [Bulletin of traumatology and orthopedics named after N. N. Priorov]. 2014, no. 4, pp. 38–43.
12. Burmatov N. A., Sergeev K. S. Geniy ortopedii [Orthopedics genius]. 2009, no. 1, pp. 93–97.
13. Davydov E. A., Mushkin A. Yu., Zuev I. V., Il'in A. A., Kollerov M. Yu. Geniy Ortopedii [Orthopedics genius]. 2010, no. 1, pp. 5–11.
14. Kim Y. S., Zhang H. Y., Moon B. J. et al. Neurosurg Focus. 2007, vol. 22 (1), E10. PMID: 17608331. Available at: https://www.ncbi.nlm.nih.gov/m/pubmed/17608331.
15. Kolesov S. V., Shvets V. V., Kolbovskiy D. A., Kaz'min A. I., Morozova N. S. Vestnik travmatologii i ortopedii im. N. N. Priorova [Bulletin of traumatology and orthopedics named after N.N. Priorov]. 2014, no. 2, pp. 19–24.
16. Kolesov S. V., Kolbovskiy D. A., Sazhnev M. L., Kaz'min A. I., Pereverzev V. S. Tsiv'yanovskie chteniya: sb. materialov IX Vseros. nauch.-prakt. konf. molodykh uchenykh s mezhdunarodnym uchastiem, posvyashchennoy 70-letnemu yubileyu Novosibirskogo nauchno-issledovatel'skogo instituta travmatologii i ortopedii im. Ya. L. Tsiv'yana (g. Novosibirsk 25–26 noyabrya, 2016) [Tsivianov reading: proceedings of IX All-Russian scientific and practical conference of young scientists with international participation, dedicated to 70th anniversary of Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivianov )Novosibirsk 25–26th of November, 2016]. Novosibirsk, 2016, vol. 1, pp. 228–233.
17. Ootsuka K., Simidzu K. et al. Splavy s effektom pamyati formy: per. s yapon. [Shape memory alloys: translated from japanese]. Moscow: Metallurgiya, 1990, 224 p.
18. Kuftov V. S., Ershov N. I. Materialy VIII s"ezda mezhregional'noy Assotsiatsii khirurgov-vertebrologov Rossii s mezhdunarodnym uchastiem i IV s"ezda dorozhnykh neyrokhirurgov (g. Irkutsk, 25–26 maya 2017 g.) [Proceedings of VIII congress of the interregional Association of Russian Vertebral Surgeons with international participation and VI congress of road neurosurgeon]. Irkutsk: INTsKhT, 2017, pp. 107–109.
19. Acampora S., Acampora F. M., Kollerov M., Ilyin A. A., Cantore G. P. Open Access J Neurol Neurosurg. 2017, vol. 4 (1), p. 555626. DOI 10.19080/OAJNN.2017.04.555626.
20. Schaeren S., Broger I., Jeanneret B. Spine (Phila Pa 1976). 2008, vol. 33, pp. E636–E642.
DOI10.1097/BRS.0b013e31817d2435.
21. Cabello J., Cavanilles-Walker J. M., Iborra M., Ubierna M. T., Covaro A., Roca J. An in vitro biomechanical analysis. Arch Orthop Trauma Surg. 2013, vol. 133, pp. 443–448.
22. Özkaya M., Demir T., Yaman O., Yaman M. E., Özalp H., Dalbayrak S. World Neurosurg. 2016, vol. 86, pp. 199–209. DOI 10.1016/j.wneu.2015.09.062.
23. Kim Do-Keun, Lim Hyunkeun, Rim Dae Cheol, Oh Chang Hyun Korean J Spine. 2016, vol. 13 (2), pp. 57–62. DOI https://doi.org/10.14245/kjs.2016.13.2.57.
24. Yamada Hiroshi. Strength of biological materials. Ed. F. Gaynor Evang. Hingtington (New York): Kriger, 1973.
25. Denis F. Clin. orthop. 1984, vol. 189, pp. 65–68.
26. Kollerov M. Yu., Usikov V. D., Kuftov V. S., Gusev D. E., Oreshko E. I. Titan [Titanium]. 2013, no. 1 (39), pp. 39–45.
27. Kollerov M. Y., Gusev D., Lukina E., Mason P., Wagstaff P. Materials Science and Engineering A. 2013, vol. 585, pp. 356–362.
28. Faryon A. O., Sergeev K. S., Pas'kov R. V. Biomeditsinskiy zhurnal Medline.ru. [Biomedical journal Medline.ru]. 2005, vol. 6, art. 100, pp. 236–237. Available at: http://www.medline.ru/public/art/tom6/art100.phtml.
29. Garreau de L. C. Orthop Traumatol Surg Res. 2014, vol. 100 (1 Suppl), pp. 85–90. DOI 10.1016/j.otsr.2013.11.001.
30. American Spinal Injury Association, International Medical Society of paraplegia. International Standards for Neurological and Functional Classifications of Spinal Cord Injury. Chicago, IL: ASIA/IMSOP, 1992, 53 p.

 

Дата создания: 17.06.2019 13:29
Дата обновления: 17.06.2019 14:24